Log-concavity and the maximum entropy property of the Poisson distribution

نویسنده

  • Oliver Johnson
چکیده

We prove that the Poisson distribution maximises entropy in the class of ultralog-concave distributions, extending a result of Harremoës. The proof uses ideas concerning log-concavity, and a semigroup action involving adding Poisson variables and thinning. We go on to show that the entropy is a concave function along this semigroup. 1 Maximum entropy distributions It is well-known that the distributions which maximise entropy under certain very natural conditions take a simple form. For example, among random variables with fixed mean and variance the entropy is maximised by the normal distribution. Similarly, for random variables with positive support and fixed mean, the entropy is maximised by the exponential distribution. The standard technique for proving such results uses the Gibbs inequality, and exploits the fact that, given a function f(x), and fixing Λ(p) = ∫ p(x)f(x)dx, the maximum entropy density is of the form α exp(−βf(x)). Example 1.1 For a density p with mean μ and variance σ, write φμ,σ2 for the density of a N(μ, σ) random variable, and define the function Λ(p) = − ∫ p(x) logφμ,σ2(x)dx. ∗Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WB, UK. Email: [email protected] Fax: +44 1223 337956 Phone: +44 1223 337946

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures

Sufficient conditions are developed, under which the compound Poisson distribution has maximal entropy within a natural class of probability measures on the nonnegative integers. Recently, one of the authors [O. Johnson, Stoch. Proc. Appl., 2007] used a semigroup approach to show that the Poisson has maximal entropy among all ultra-log-concave distributions with fixed mean. We show via a non-tr...

متن کامل

On the entropy and log-concavity of compound Poisson measures

Motivated, in part, by the desire to develop an information-theoretic foundation for compound Poisson approximation limit theorems (analogous to the corresponding developments for the central limit theorem and for simple Poisson approximation), this work examines sufficient conditions under which the compound Poisson distribution has maximal entropy within a natural class of probability measure...

متن کامل

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions

The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008